Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
PLoS Genet ; 16(9): e1009019, 2020 09.
Article in English | MEDLINE | ID: mdl-32915782

ABSTRACT

Loci identified in genome-wide association studies (GWAS) can include multiple distinct association signals. We sought to identify the molecular basis of multiple association signals for adiponectin, a hormone involved in glucose regulation secreted almost exclusively from adipose tissue, identified in the Metabolic Syndrome in Men (METSIM) study. With GWAS data for 9,262 men, four loci were significantly associated with adiponectin: ADIPOQ, CDH13, IRS1, and PBRM1. We performed stepwise conditional analyses to identify distinct association signals, a subset of which are also nearly independent (lead variant pairwise r2<0.01). Two loci exhibited allelic heterogeneity, ADIPOQ and CDH13. Of seven association signals at the ADIPOQ locus, two signals colocalized with adipose tissue expression quantitative trait loci (eQTLs) for three transcripts: trait-increasing alleles at one signal were associated with increased ADIPOQ and LINC02043, while trait-increasing alleles at the other signal were associated with decreased ADIPOQ-AS1. In reporter assays, adiponectin-increasing alleles at two signals showed corresponding directions of effect on transcriptional activity. Putative mechanisms for the seven ADIPOQ signals include a missense variant (ADIPOQ G90S), a splice variant, a promoter variant, and four enhancer variants. Of two association signals at the CDH13 locus, the first signal consisted of promoter variants, including the lead adipose tissue eQTL variant for CDH13, while a second signal included a distal intron 1 enhancer variant that showed ~2-fold allelic differences in transcriptional reporter activity. Fine-mapping and experimental validation demonstrated that multiple, distinct association signals at these loci can influence multiple transcripts through multiple molecular mechanisms.


Subject(s)
Adiponectin/genetics , Adiponectin/metabolism , Adipose Tissue/metabolism , Alleles , Cadherins/genetics , Cadherins/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Gene Frequency/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study/methods , Humans , Insulin Receptor Substrate Proteins/genetics , Insulin Receptor Substrate Proteins/metabolism , Male , Metabolic Syndrome/genetics , Phenotype , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci/genetics , Regulatory Sequences, Nucleic Acid , Transcription Factors/genetics , Transcription Factors/metabolism
2.
Am J Hum Genet ; 105(4): 773-787, 2019 10 03.
Article in English | MEDLINE | ID: mdl-31564431

ABSTRACT

Genome-wide association studies (GWASs) have identified thousands of genetic loci associated with cardiometabolic traits including type 2 diabetes (T2D), lipid levels, body fat distribution, and adiposity, although most causal genes remain unknown. We used subcutaneous adipose tissue RNA-seq data from 434 Finnish men from the METSIM study to identify 9,687 primary and 2,785 secondary cis-expression quantitative trait loci (eQTL; <1 Mb from TSS, FDR < 1%). Compared to primary eQTL signals, secondary eQTL signals were located further from transcription start sites, had smaller effect sizes, and were less enriched in adipose tissue regulatory elements compared to primary signals. Among 2,843 cardiometabolic GWAS signals, 262 colocalized by LD and conditional analysis with 318 transcripts as primary and conditionally distinct secondary cis-eQTLs, including some across ancestries. Of cardiometabolic traits examined for adipose tissue eQTL colocalizations, waist-hip ratio (WHR) and circulating lipid traits had the highest percentage of colocalized eQTLs (15% and 14%, respectively). Among alleles associated with increased cardiometabolic GWAS risk, approximately half (53%) were associated with decreased gene expression level. Mediation analyses of colocalized genes and cardiometabolic traits within the 434 individuals provided further evidence that gene expression influences variant-trait associations. These results identify hundreds of candidate genes that may act in adipose tissue to influence cardiometabolic traits.


Subject(s)
Adipose Tissue/metabolism , Diabetes Mellitus, Type 2/genetics , Gene Expression , Obesity/genetics , Alleles , Body Mass Index , Finland , Genome-Wide Association Study , Humans , Male , Quantitative Trait Loci , Waist-Hip Ratio
3.
G3 (Bethesda) ; 9(8): 2521-2533, 2019 08 08.
Article in English | MEDLINE | ID: mdl-31186305

ABSTRACT

Identifying the regulatory mechanisms of genome-wide association study (GWAS) loci affecting adipose tissue has been restricted due to limited characterization of adipose transcriptional regulatory elements. We profiled chromatin accessibility in three frozen human subcutaneous adipose tissue needle biopsies and preadipocytes and adipocytes from the Simpson Golabi-Behmel Syndrome (SGBS) cell strain using an assay for transposase-accessible chromatin (ATAC-seq). We identified 68,571 representative accessible chromatin regions (peaks) across adipose tissue samples (FDR < 5%). GWAS loci for eight cardiometabolic traits were enriched in these peaks (P < 0.005), with the strongest enrichment for waist-hip ratio. Of 110 recently described cardiometabolic GWAS loci colocalized with adipose tissue eQTLs, 59 loci had one or more variants overlapping an adipose tissue peak. Annotated variants at the SNX10 waist-hip ratio locus and the ATP2A1-SH2B1 body mass index locus showed allelic differences in regulatory assays. These adipose tissue accessible chromatin regions elucidate genetic variants that may alter adipose tissue function to impact cardiometabolic traits.


Subject(s)
Adipose Tissue/metabolism , Chromatin/genetics , Gene Expression Profiling , Genome, Human , Genomics , Quantitative Trait Loci , Quantitative Trait, Heritable , Adipocytes/metabolism , Aged , Alleles , Allelic Imbalance , Animals , Binding Sites , Chromatin Immunoprecipitation Sequencing , Chromosome Mapping , Disease Susceptibility , Genome-Wide Association Study , Genomics/methods , Humans , Male , Mice , Middle Aged , Protein Binding
4.
Am J Hum Genet ; 103(5): 637-653, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30388398

ABSTRACT

Genome-wide association studies (GWASs) have identified thousands of loci associated with hundreds of complex diseases and traits, and progress is being made toward elucidating the causal variants and genes underlying these associations. Functional characterization of mechanisms at GWAS loci is a multi-faceted challenge. Challenges include linkage disequilibrium and allelic heterogeneity at each locus, the noncoding nature of most loci, and the time and cost needed for experimentally evaluating the potential mechanistic contributions of genes and variants. As GWAS sample sizes increase, more loci are identified, and the complexities of individual loci emerge. Loci can consist of multiple association signals, each of which can reflect the influence of multiple variants, inseparable by association analyses. Each signal within a locus can influence the same or different target genes. Experimental studies of genes and variants can differ on the basis of cell type, cellular environment, or other context-specific variables. In this review, we describe the complexity of mechanisms at GWAS loci-including multiple signals, multiple variants, and/or multiple genes-and the implications these complexities hold for experimental study design and interpretation of GWAS mechanisms.


Subject(s)
Quantitative Trait Loci/genetics , Animals , Genetic Variation/genetics , Genome-Wide Association Study/methods , Humans , Linkage Disequilibrium/genetics
5.
G3 (Bethesda) ; 7(9): 3217-3227, 2017 09 07.
Article in English | MEDLINE | ID: mdl-28754724

ABSTRACT

Recent genome-wide association studies (GWAS) have identified variants associated with high-density lipoprotein cholesterol (HDL-C) located in or near the ANGPTL8 gene. Given the extensive sharing of GWAS loci across populations, we hypothesized that at least one shared variant at this locus affects HDL-C. The HDL-C-associated variants are coincident with expression quantitative trait loci for ANGPTL8 and DOCK6 in subcutaneous adipose tissue; however, only ANGPTL8 expression levels are associated with HDL-C levels. We identified a 400-bp promoter region of ANGPTL8 and enhancer regions within 5 kb that contribute to regulating expression in liver and adipose. To identify variants functionally responsible for the HDL-C association, we performed fine-mapping analyses and selected 13 candidate variants that overlap putative regulatory regions to test for allelic differences in regulatory function. Of these variants, rs12463177-G increased transcriptional activity (1.5-fold, P = 0.004) and showed differential protein binding. Six additional variants (rs17699089, rs200788077, rs56322906, rs3760782, rs737337, and rs3745683) showed evidence of allelic differences in transcriptional activity and/or protein binding. Taken together, these data suggest a regulatory mechanism at the ANGPTL8 HDL-C GWAS locus involving tissue-selective expression and at least one functional variant.


Subject(s)
Angiopoietin-like Proteins/genetics , Cholesterol, HDL/genetics , Chromosome Mapping , Genetic Variation , Genome-Wide Association Study , Peptide Hormones/genetics , Quantitative Trait Loci , Regulatory Sequences, Nucleic Acid , Aged , Alleles , Angiopoietin-Like Protein 8 , Animals , Cell Line , Enhancer Elements, Genetic , Gene Expression , Genes, Reporter , Genetic Association Studies , Haplotypes , Humans , Male , Metabolic Syndrome/epidemiology , Metabolic Syndrome/genetics , Mice , Middle Aged , Organ Specificity/genetics , Polymorphism, Single Nucleotide , Promoter Regions, Genetic , Quantitative Trait, Heritable , Subcutaneous Fat/metabolism
6.
Diabetes ; 66(9): 2521-2530, 2017 09.
Article in English | MEDLINE | ID: mdl-28684635

ABSTRACT

Molecular mechanisms remain unknown for most type 2 diabetes genome-wide association study identified loci. Variants associated with type 2 diabetes and fasting glucose levels reside in introns of ADCY5, a gene that encodes adenylate cyclase 5. Adenylate cyclase 5 catalyzes the production of cyclic AMP, which is a second messenger molecule involved in cell signaling and pancreatic ß-cell insulin secretion. We demonstrated that type 2 diabetes risk alleles are associated with decreased ADCY5 expression in human islets and examined candidate variants for regulatory function. rs11708067 overlaps a predicted enhancer region in pancreatic islets. The type 2 diabetes risk rs11708067-A allele showed fewer H3K27ac ChIP-seq reads in human islets, lower transcriptional activity in reporter assays in rodent ß-cells (rat 832/13 and mouse MIN6), and increased nuclear protein binding compared with the rs11708067-G allele. Homozygous deletion of the orthologous enhancer region in 832/13 cells resulted in a 64% reduction in expression level of Adcy5, but not adjacent gene Sec22a, and a 39% reduction in insulin secretion. Together, these data suggest that rs11708067-A risk allele contributes to type 2 diabetes by disrupting an islet enhancer, which results in reduced ADCY5 expression and impaired insulin secretion.


Subject(s)
Adenylyl Cyclases/metabolism , Diabetes Mellitus, Type 2/metabolism , Gene Expression Regulation/physiology , Genetic Variation , Genome-Wide Association Study , Islets of Langerhans/metabolism , Adenylyl Cyclases/genetics , Diabetes Mellitus, Type 2/genetics , Humans , Insulin/metabolism , Insulin Secretion
7.
Hum Mol Genet ; 26(9): 1770-1784, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28334899

ABSTRACT

Large-scale meta-analyses of genome-wide association studies (GWAS) have identified >175 loci associated with fasting cholesterol levels, including total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and triglycerides (TG). With differences in linkage disequilibrium (LD) structure and allele frequencies between ancestry groups, studies in additional large samples may detect new associations. We conducted staged GWAS meta-analyses in up to 69,414 East Asian individuals from 24 studies with participants from Japan, the Philippines, Korea, China, Singapore, and Taiwan. These meta-analyses identified (P < 5 × 10-8) three novel loci associated with HDL-C near CD163-APOBEC1 (P = 7.4 × 10-9), NCOA2 (P = 1.6 × 10-8), and NID2-PTGDR (P = 4.2 × 10-8), and one novel locus associated with TG near WDR11-FGFR2 (P = 2.7 × 10-10). Conditional analyses identified a second signal near CD163-APOBEC1. We then combined results from the East Asian meta-analysis with association results from up to 187,365 European individuals from the Global Lipids Genetics Consortium in a trans-ancestry meta-analysis. This analysis identified (log10Bayes Factor ≥6.1) eight additional novel lipid loci. Among the twelve total loci identified, the index variants at eight loci have demonstrated at least nominal significance with other metabolic traits in prior studies, and two loci exhibited coincident eQTLs (P < 1 × 10-5) in subcutaneous adipose tissue for BPTF and PDGFC. Taken together, these analyses identified multiple novel lipid loci, providing new potential therapeutic targets.


Subject(s)
Cholesterol/genetics , Triglycerides/genetics , Adult , Alleles , Asian People/genetics , Cholesterol/metabolism , Ethnicity , Female , Gene Frequency/genetics , Genetic Association Studies/methods , Genome-Wide Association Study , Humans , Linkage Disequilibrium/genetics , Lipids/genetics , Lipoproteins, HDL/genetics , Lipoproteins, LDL/genetics , Male , Middle Aged , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci , Triglycerides/metabolism , White People/genetics
8.
Proc Natl Acad Sci U S A ; 114(9): 2301-2306, 2017 02 28.
Article in English | MEDLINE | ID: mdl-28193859

ABSTRACT

Genome-wide association studies (GWAS) have identified >100 independent SNPs that modulate the risk of type 2 diabetes (T2D) and related traits. However, the pathogenic mechanisms of most of these SNPs remain elusive. Here, we examined genomic, epigenomic, and transcriptomic profiles in human pancreatic islets to understand the links between genetic variation, chromatin landscape, and gene expression in the context of T2D. We first integrated genome and transcriptome variation across 112 islet samples to produce dense cis-expression quantitative trait loci (cis-eQTL) maps. Additional integration with chromatin-state maps for islets and other diverse tissue types revealed that cis-eQTLs for islet-specific genes are specifically and significantly enriched in islet stretch enhancers. High-resolution chromatin accessibility profiling using assay for transposase-accessible chromatin sequencing (ATAC-seq) in two islet samples enabled us to identify specific transcription factor (TF) footprints embedded in active regulatory elements, which are highly enriched for islet cis-eQTL. Aggregate allelic bias signatures in TF footprints enabled us de novo to reconstruct TF binding affinities genetically, which support the high-quality nature of the TF footprint predictions. Interestingly, we found that T2D GWAS loci were strikingly and specifically enriched in islet Regulatory Factor X (RFX) footprints. Remarkably, within and across independent loci, T2D risk alleles that overlap with RFX footprints uniformly disrupt the RFX motifs at high-information content positions. Together, these results suggest that common regulatory variations have shaped islet TF footprints and the transcriptome and that a confluent RFX regulatory grammar plays a significant role in the genetic component of T2D predisposition.


Subject(s)
Diabetes Mellitus, Type 2/genetics , Genetic Predisposition to Disease , Genome, Human , Islets of Langerhans/metabolism , Quantitative Trait Loci , Transcriptome , Alleles , Base Sequence , Binding Sites , Chromatin/chemistry , Chromatin/metabolism , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Epigenesis, Genetic , Gene Expression Profiling , Genetic Variation , Genome-Wide Association Study , Genomic Imprinting , Humans , Islets of Langerhans/pathology , Polymorphism, Single Nucleotide , Protein Binding , Protein Isoforms/genetics , Protein Isoforms/metabolism , Regulatory Factor X Transcription Factors/genetics , Regulatory Factor X Transcription Factors/metabolism
9.
PLoS Genet ; 10(9): e1004633, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25211022

ABSTRACT

Many of the type 2 diabetes loci identified through genome-wide association studies localize to non-protein-coding intronic and intergenic regions and likely contain variants that regulate gene transcription. The CDC123/CAMK1D type 2 diabetes association signal on chromosome 10 spans an intergenic region between CDC123 and CAMK1D and also overlaps the CDC123 3'UTR. To gain insight into the molecular mechanisms underlying the association signal, we used open chromatin, histone modifications and transcription factor ChIP-seq data sets from type 2 diabetes-relevant cell types to identify SNPs overlapping predicted regulatory regions. Two regions containing type 2 diabetes-associated variants were tested for enhancer activity using luciferase reporter assays. One SNP, rs11257655, displayed allelic differences in transcriptional enhancer activity in 832/13 and MIN6 insulinoma cells as well as in human HepG2 hepatocellular carcinoma cells. The rs11257655 risk allele T showed greater transcriptional activity than the non-risk allele C in all cell types tested. Using electromobility shift and supershift assays we demonstrated that the rs11257655 risk allele showed allele-specific binding to FOXA1 and FOXA2. We validated FOXA1 and FOXA2 enrichment at the rs11257655 risk allele using allele-specific ChIP in human islets. These results suggest that rs11257655 affects transcriptional activity through altered binding of a protein complex that includes FOXA1 and FOXA2, providing a potential molecular mechanism at this GWAS locus.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 1/genetics , Cell Cycle Proteins/genetics , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Genetic Variation , Hepatocyte Nuclear Factor 3-alpha/metabolism , Hepatocyte Nuclear Factor 3-beta/metabolism , Regulatory Sequences, Nucleic Acid , Alleles , Animals , Cell Line , Enhancer Elements, Genetic , Gene Expression Regulation , Genetic Loci , Genome-Wide Association Study , Hepatocytes/metabolism , Humans , Islets of Langerhans/metabolism , Mice , Polymorphism, Single Nucleotide , Protein Binding , Transcription, Genetic
10.
BMC Evol Biol ; 13: 128, 2013 Jun 20.
Article in English | MEDLINE | ID: mdl-23786343

ABSTRACT

BACKGROUND: The infraorder Anomura has long captivated the attention of evolutionary biologists due to its impressive morphological diversity and ecological adaptations. To date, 2500 extant species have been described but phylogenetic relationships at high taxonomic levels remain unresolved. Here, we reconstruct the evolutionary history-phylogeny, divergence times, character evolution and diversification-of this speciose clade. For this purpose, we sequenced two mitochondrial (16S and 12S) and three nuclear (H3, 18S and 28S) markers for 19 of the 20 extant families, using traditional Sanger and next-generation 454 sequencing methods. Molecular data were combined with 156 morphological characters in order to estimate the largest anomuran phylogeny to date. The anomuran fossil record allowed us to incorporate 31 fossils for divergence time analyses. RESULTS: Our best phylogenetic hypothesis (morphological + molecular data) supports most anomuran superfamilies and families as monophyletic. However, three families and eleven genera are recovered as para- and polyphyletic. Divergence time analysis dates the origin of Anomura to the Late Permian ~259 (224-296) MYA with many of the present day families radiating during the Jurassic and Early Cretaceous. Ancestral state reconstruction suggests that carcinization occurred independently 3 times within the group. The invasion of freshwater and terrestrial environments both occurred between the Late Cretaceous and Tertiary. Diversification analyses found the speciation rate to be low across Anomura, and we identify 2 major changes in the tempo of diversification; the most significant at the base of a clade that includes the squat-lobster family Chirostylidae. CONCLUSIONS: Our findings are compared against current classifications and previous hypotheses of anomuran relationships. Many families and genera appear to be poly- or paraphyletic suggesting a need for further taxonomic revisions at these levels. A divergence time analysis provides key insights into the origins of major lineages and events and the timing of morphological (body form) and ecological (habitat) transitions. Living anomuran biodiversity is the product of 2 major changes in the tempo of diversification; our initial insights suggest that the acquisition of a crab-like form did not act as a key innovation.


Subject(s)
Anomura/genetics , Evolution, Molecular , Animals , Anomura/classification , Biodiversity , Ecosystem , Fossils , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...